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Abstract

Background: A new patient-reported health measurement model has been developed to quantify descriptions of
health states. Known as the multi-attribute preference response (MAPR) model, it is based on item response theory.
The response task in the MAPR is for a patient to judge whether hypothetical health-state descriptions are better or
worse than his/her own health status.

Methods: In its most simple form MAPR is a Rasch model where for each respondent on the same unidimensional
health scale values are estimated of their own health status and values of the hypothetical comparator health
states. These values reflect the quality or severity of the health states. Alternatively, the respondents are offered
health-state descriptions that are based on a classification system (e.g., multi-attribute) with a fixed number of
health attributes, each with a limited number of levels. In the latter variant, the weights of the levels of the
attributes in the descriptive system, which represents the range of the health states, are estimated. The results of a
small empirical study are presented to illustrate the procedures of the MAPR model and possible extensions of the
model are discussed.

Results: The small study that we conducted to illustrate the procedure and results of our proposed method to
measure the quality of health states and patients’ own health status showed confirming results.

Conclusions: This paper introduces the typical MAPR model and shows how it extends the basic Rasch model with
a regression function for the attributes of the health-state classification system.

Keywords: Health-related quality of life, Health status, Latent logistic test model, Patient-reported measurement,
Rasch model

Background
Health is a sociocultural construct encompassing a wide
range of phenomena, so it is not surprising that various
actors define it differently. Traditionally, physicians have
been guided by a biomedical model and have thus
understood health predominantly as a condition that
falls within acceptable biological norms. Nowadays, there
is an increased awareness of the impact of health and

health care on the quality of human life. The conven-
tional clinical health-status construct is now often ex-
tended to psychological and even social factors, thereby
making subjective measures such as (perceived) health
status or ‘quality of life’ necessary — and rightly so, be-
cause the ultimate goal of all health interventions is to
improve a patient’s perceived health condition. The use
of these subjective measures has proliferated ever since
the World Health Organization published its definition
of health in 1946 [1].
There are several ways to express health. We can com-

pile a ‘snapshot’ of a patient’s current health condition
from an ‘image bank’ comprised of health states. These
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health states consist of discrete health attributes (e.g., do-
mains, dimensions, items) each with a number of levels.
When combined, they represent a description of a per-
son’s health status or health-related quality of life
(HRQoL) [2]. Subsequently, such health-state descriptions
can be measured (valued) by assigning meaningful num-
bers (values) to an individual’s health state. ‘Meaningful’ is
here defined as values that reflect the patients’ health sta-
tus in relationship to other health states. This is different
from subjective measures (e.g., visual analogue scale) that
reflect the perception of how individuals experience their
health status in relationship to their own internal stan-
dards. It is convenient to express individuals’ health in sin-
gle metric values, as these can be used in health outcomes
research, for clinical monitoring of the health status of pa-
tient groups, and in particular, in disease modeling studies
and economic evaluations.
To obtain health-state values (variously called prefer-

ences, utilities, index, or weights), the health-state de-
scriptions must be quantified in terms of seriousness or
quality. Differences between health states values are as-
sumed to correspond to increments of quality differ-
ences between these states, which implies that the values
are on an interval-level scale [2]. Most conventional
methods of measurement (or valuation) stem from
health economics (e.g., standard gamble, time trade-off )
and are susceptible to many disturbing factors such as
adaptation, time preference, context, reference point,
and other biases [3–5]. To control for adaptation, which
occurs in most of these conventional methods (especially
for chronically ill patients), all economic valuation
methods use hypothetical health states that are assessed
by a sample of (unaffected) members of the general
population. However, it is reasonable to assume that
healthy people are not adequately informed or lack the
imagination to appropriately judge the impact of health
states, particularly severe ones [6, 7].
A new way to quantify health states was recently intro-

duced. This measurement method, the multi-attribute
preference response (MAPR) model, is based on the
Rasch model (an item response theory model) [8]. The
MAPR model more or less mimics the situation of a pa-
tient with a certain health condition lying in a wardroom
where the other occupants have (related) complaints and
symptoms. This patient is asked to compare his own
health state to that of his roommates by indicating
whether his own state is better or worse. The conven-
tional preference-based measurement methods usually
yield an opinion on health states from healthy controls,
while the result of the MAPR is an internal positioning
of a patient’s health status with respect to other health
states. The response mechanism of the MAPR model is
less susceptible to various biases that conventional
methods are prone to. Moreover, the MAPR is the first

generic health preference model that is fully based on
patient perception and reporting; as such it is a genuine
patient-reported outcome measure. Apart from being
grounded in a renowned measurement theory, the
MAPR response tasks are attractive and easy to perform
in a self-completion setting.
This article introduces and explains the MAPR model

conceptually and mathematically. The first section looks
into the background of its measurement mechanism,
namely the Rasch model, and expands on its operation in
a health setting. The second section describes the MAPR
model; the third works through its estimation procedures.
Finally, the results of a small empirical study are presented
to illustrate the procedures of the MAPR model and pos-
sible extensions of the model are discussed.

Methods
Measurement mechanism
A probabilistic measurement model was invented by the
Danish mathematician Georg Rasch. While primarily
employed to assess educational attainment, it is increas-
ingly used for other purposes [9]. Its original setting was
the field of reading skills, where it was intended for use
with dichotomous response data (e.g., correct/wrong).
Nowadays, the Rasch model or the closely related
one-parameter logistic model (OPLM) is considered a
variant of the class of item response theory (IRT) models
[9, 10]. The Rasch model is built around the idea that
the probability of a correct response to an item is mod-
eled as a logistic function of the difference between the
difficulty of an item (parameterized by β) and the char-
acteristics of a person (e.g., ability parameter θ):

π ¼ P þjβ; θð Þ ¼ 1
1þ eβ−θ

¼ eθ−β

1þ eθ−β
:

The Rasch model poses three stringent requirements.
The first is unidimensionality: a unique one-dimensional
latent variable explains the response to the items. The
second is monotonicity: the probability of a positive re-
sponse to an item is a non-decreasing function of the la-
tent variable. And the third is local independence: for
any given individual, the item responses are independent
conditional on where individuals are on the underlying
latent scale.
Under the Rasch model, a Guttman scale is the most

likely response pattern for a person when items are or-
dered from least difficult to most difficult [11]. This
means that if someone responds correctly to an item,
then that person should succeed on all easier items; con-
versely, if one responds incorrectly, then he/she should
fail on all items that are more difficult (Fig. 1). Unlike
the Guttman scale, the Rasch model is a probabilistic
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model. In the latter, the probability that any person will
succeed on an easier item will always be greater than the
probability of success on a more difficult item. The
Guttman scale is the deterministic limiting case of the
Rasch model.

Health context
In the context of health measurement assuming the
Rasch model implies that the more positive the differ-
ence between the value (the perceived quality) of the
health status of a patient (θ) and the value of another
health state (β) to be judged, the higher the probability
that the patient will indicate that his/her current health
status is better than the presented health state. Or the
other way around, patients in very poor health will con-
sider many other health states as better than their own.
Using the Rasch model, one can estimate the health sta-
tus of individual patients (i.e., their ability, in Rasch ter-
minology) and the value of the hypothetical health states
(i.e., difficulty of the parameters of items) on the same
latent scale. In short, patients are asked to respond to
hypothetical health states by comparing these with their
own health status. For example, “Is this health state bet-
ter than your own health state?”

In the Rasch model, patients compare their own health
status with a few prescribed hypothetical health states.
These comparator health states can span the whole con-
tinuum from bad to mild (as done in this article in our
small empirical study), but they can also denote health
states that are closely positioned on the latent scale to
the actual health status of the individual patient. Such
comparator health states may be based on holistic de-
scriptions or objects. Holistic refers to unstructured ver-
bal descriptions or objects such as people’s faces or skin
in photos. In general, holistic objects are often extremely
easy to compare and judge. However, features (attri-
butes) by which to describe the object specifically are
often absent. Alternatively, health descriptions may be
derived from a classification system with multiple attri-
butes, whereby each attribute has a limited number of
levels (Fig. 2). The latter approach enables the investiga-
tor to predict values for health states that are not part of
the empirical study (see below).
Let θp be the (unknown) health status of person p (p =

1, ..., P). Suppose that βi is the (unknown) value of health
state i (i = 1, …, I) as measured on a latent scale. Impos-
ing the logistic function of the difference between a per-
son’s health status and the values of the comparator
health states on the probability that a person prefers his/
her own health state over the comparator description
leads to the Rasch model. More formally, let Yip be a
random variable with a value of one if a person prefers
his/her health status over the hypothetical health state
and zero otherwise. In this way it is assumed that the
health status θp of person p is on the same latent scale
as the health states i with βi and that a person will most
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Fig. 1 Schematic illustration of the Guttman/Rasch data structure.
Representation of the raw data (top) and after sorting of the
columns (health states) and the rows (patients) in order to arrive at
the hierarchical Guttman/Rasch data structure (a check indicates that
this health state is preferred over the next health state, a cross
indicates a misfit)

Is this health state better or worse than
your own health state?

BetterWorse

Severe problems to walk about
Unable to wash or dress myself
Moderate problems doing my usual activities
Slight pain or discomfort
Not anxious or depressed

Fig. 2 Example of a response task under the multi-attribute
preference response (MAPR) model for a multi-attribute health-state
description (state ‘33221’) based on the EQ-5D-3 L instrument
(3-level version)
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likely prefer his/her own health status over health state i
if θp exceeds βi. Under the Rasch model we assume that

πip ¼ P Y ip ¼ 1
� ��θp; βiÞ ¼

eθp−βi

1þ eθp−βi

¼ 1
1þ eβi−θp

; ð1Þ

or equivalently in the logit form

ηip ¼ θp−βi; ð2Þ

where η = log (π/(1 − π)) is the logit link function. This
means that if a person’s health status θp is equal in qual-
ity to the hypothetical comparator health state, so there
is no preference difference for either state, the probabil-
ity of choosing the one over the other is fifty-fifty. Also,
the further apart the person’s health state is from the
comparator, the larger the probability that the better
state is preferred and chosen. In the following, model (1)
will be called the holistic MAPR model.
The holistic MAPR model, like the original Rasch, is a

descriptive model. It describes the individual patient’s
health state (e.g., by localizing patients on the health
scale) and the value of the judged comparator states
without explaining either of these by characteristics of
the patients or the health states. The holistic MAPR is
both feasible and attractive in many clinical situations
where characteristics cannot be easily discerned, such as
body and skin deformations. Comparing and assessing
pictures or movies may then be more appropriate. A
crucial requirement is that the respondents should be lo-
cated along the whole health scale from very severe to
almost perfect health; otherwise, the model cannot be
sufficiently estimated. The typical response task of the
MAPR model precludes responses from a sample of the
general population. The latter are predominantly healthy
and therefore do not provide the information needed to
estimate the model.

MAPR model
Several simple classification systems have been developed
to capture the major features of health such that they can
be used to describe health states. Each system transposes
those features into a certain number of health attributes.
The health state can then be measured with a discrete re-
sponse scale for each attribute at a certain number of
levels. For example, the classification system of the
preference-based EQ-5D-3 L instrument consists of five
health attributes: mobility, self-care, usual activities, pain/
discomfort, and anxiety/depression, with a value of 1
(best), 2, or 3 (worst) for each attribute [12]. In this way
an EQ-5D-3 L health state can be represented by five

digits, with 11111 denoting perfect health and 33333 the
worst possible condition. The three-level version of the
EQ-5D-3 L system defines 35 = 243 possible partially ordered
different health states. The SF-6D health-state classification
contains six attributes, namely physical functioning, role
limitation, social functioning, pain, mental health, and vital-
ity. With response categories ranging from four to six levels,
the SF-6D can describe 18,000 different health states. Some
other classification systems are the Health Utilities Index ver-
sion 3 (HUI-3), 15D, Assessment of Quality of Life (AQoL),
and the Quality of Well-Being scale (QWB) [13–16].

Formal representation
Assume that we now have a classification system wherein
a health state is represented as a vector xi = (xi1, ..., xiJ)
with discrete levels on each of the J attributes. The num-
ber of levels in the jth attribute is denoted by nj, so on at-
tribute j the possible values are 1,2, …, nj. In this way the
vector (1,1,…,1) represents perfect health and (n1, n2, …,
nJ) the worst state. Suppose that the value βi of health
state xi can be described as a function βι = f (xi) to
reflect the partial ordering of the health states. In the
literature several functions have been proposed to
model the value of health states as a function of a set
of health attributes. For instance, the simple additive
linear model assumes that linearity is present in each
attribute and that the value drops by the same
amount, for example when moving from level 1 to 2
or from level 2 to 3. A less restrictive and more real-
istic model can be obtained by taking each attribute
as a categorical variable in the regression model:

βi ¼ f xið Þ ¼
X

J
j¼1

X n j

k¼1αjkdjk xij
� �

; ð3Þ
where djk(xij) is a dummy variable with djk(xij) = 1 if xij =
k and zero otherwise. The contribution to the value βi of
health state xi of a change in attribute j from level 1 to k
is parameterized by αjk. Notice that the regression equa-
tion in (3) has no intercept as this parameter is redun-
dant. Furthermore, additional restrictions on αjks are
required for enforcing the partial ordering on the β s
and for identifying the parameters.1 Substituting linear
expression (3) for βi in the logistic expression (2) gives

ηip ¼ θp−
X

J
j¼1

X n j

k¼1αjkdjk xij
� �

: ð4Þ
The parameterization of the value of health states is not

limited to the main effects of the health attributes, as inter-
actions between health attributes can be incorporated in
(4) by adding products of (dummies of) health attributes.
For identification purposes, the number of parameters
should be less than the number of health states that the re-
spondents are asked to compare. In the IRT literature this
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type of (item/health explanatory) model is called the linear
logistic test model (LLTM). It was originally proposed by
Scheiblechner [17] and later formalized by Fisher [10, 18–
20]. LLTM differs from the Rasch model in that the influ-
ence of the quality/severity of the comparator health states
is reduced to a linear combination of a fixed number of
health-state attributes or interactions between those
attributes, with fewer parameters than hypothetical health
states. The effects of the attributes and their levels on the
health states are estimated instead of the holistic
health-state parameters themselves (Formula 1). Being
more restrictive than the Rasch model, it enables one to
predict values for the complete set of health states that can
be constructed for a specific classification system, so pre-
dictions can also be made for health states that are not
evaluated in the response study.
Suppose we have a sample of n patients who compared

the same m health states βi(i = 1,...,m) with their own
health status. By substituting the parameterization of the
items in terms of their attributes as formulated in (3) into
formula (1), the holistic MAPR model, we can write the
probability of response of patient p on health state i as:

πip ¼ P Y ip ¼ 1
� ��θp; β ¼ f xið ÞÞ

¼ 1

1þ e
−θpþ

X
J
j¼1

Xn J

k¼1
αjkdjk xið Þ

ð5Þ

Model (5) will be denoted as the MAPR model. Esti-
mation of the health state parameters of the MAPR
model now boils down to estimation of the parameters
αjk. In that way, the value of a health state is reflected in
the characteristics of the health states as parameterized
with the variables djk(xi).

Adaptive MAPR model
A more adaptive approach is possible. Patients are thereby
asked to complete a multi-attribute classification (e.g.,
EQ-5D-3 L) in advance to classify their own health status,
denoted ~xp ¼ ð~xp1; ::; ~xpJ Þ . Then, to perform the MAPR
response task, they are confronted with a set of (individu-
alized) hypothetical (comparator) health states that were
selected in light of the classification of the patients’ own
health state from the first task (Fig. 3). So, in this case pa-
tients are shown different subsets of health states, depend-
ing on ~xp . In principle, this approach allows more precise
estimation of the position of the patients’ health status. It
also precludes selecting a restricted set of predetermined
comparator states to be judged. However, it complicates
the analysis of the data, as the subset of presented
health states differs between the respondents and de-
pends on the person’s own health state, which is re-
stricted to θp ¼ f ð~xpÞ . This adaptive operation of the
MAPR model is almost similar to computerized

adaptive testing (CAT) that is used for standard IRT
models. The difference is that for standard IRT models a
routine on a central server determines, from a large item
bank of candidate items, the next item offered to an indi-
vidual respondent. For the MAPR model a simple routine
as part of a mobile application (www.healthsnapp.info) de-
termines the comparator states (comprising multiple attri-
butes/items) to be assessed by individual patients.

Estimation of the Rasch model
When assessing health states holistically (i.e., no parame-
ters for the levels of the attributes) as in traditional item
response theory, it is assumed that the responses to
health states are independent of one another, which
gives rise to the following likelihood:

L θ; βjY ip ¼ yip
� �

¼
Y

P
p¼1

Y
I
i¼1πip

yip 1−πip
� �1−yip

ð6Þ

The parameters of the standard Rasch model can eas-
ily be estimated by several methods, e.g. full maximum
likelihood estimation, conditional maximum likelihood
and marginal maximum likelihood. All of these are
based on maximum likelihood estimation or Bayesian
estimation, and several procedures have been described
in the literature [21].We will describe now the condi-
tional maximum likelihood (CML) estimation.

Let Rp ¼
PI

i¼1 Y ip be the number of health states that
a patient p has compared to his own and were consid-
ered worse. This number is a sufficient statistic for esti-
mating the patient’s own health state θp. Thus, the
conditional likelihood of the responses is independent of
θp if we condition on Rp. This leads to the (CML) esti-
mation equations, after maximizing the likelihood:

X
P
p¼1Y ip ¼

X
P
p¼1

P Y ip ¼ 1
� ��Rp ¼ rp; βiÞ for i ¼ 1; ::; I:

ð7Þ

P (Yip = 1|Rp = rp, βi) is the probability that the pa-
tient’s health status is better than health state i, given
the number of health states found to be worse than the
patient’s health state. These I-1 equations can be solved
using a Newton-Raphson procedure leading to consist-
ent point estimates for the health-state parameters βi.
An estimate of the patient’s own health state θp can be

obtained with a maximum likelihood estimation proced-
ure. In this second step, the conditional maximum likeli-
hood estimates of βi are assumed to be fixed and are
substituted in the estimation Eq. (6). In this way the un-
certainty associated to these estimates is not accounted
for. One way to incorporate this uncertainty could be to
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use a Bayesian estimation method. In that case a sample
from the posterior distributions of the item person pa-
rameters can be used instead of imputing only the esti-
mates itself [22].
The variance of the ML estimates equals:

Var θ̂p
� �

¼ 1

I θ̂p
� � ¼ 1

PI
i¼1Pi θ̂p

� �
1−Pi θ̂p

� �� �

Note that the estimated βs are not incorporated in this
variance. The maximum of the function f (x) = x (1-x) is
0.25 for x = 0.5. One can thus see that individual health
status can be estimated more precisely when patients have
to compare health states that are close to their own state.
For the one parameter logistic model (OPLM), the

parameter estimates obtained using CML and marginal
maximum likelihood (MML) are usually close. The ad-
vantage of CML over the MML procedure is that no a
priori assumptions have to be made about a person’s
health-state distribution. When this a priori distribu-
tion is misspecified, the MML estimates may be biased.
It is expected that the distribution of person’s health

states is not normally distributed but typically skewed
to the right [23]. On the other hand, it has to be under-
lined that CML estimation also has some pitfalls, such
as the fact that individuals with perfect or zero scores
do not provide any information and, missing observa-
tions can lead to biases in case of missing not com-
pletely at random.
Whether a Rasch model fits the data, thereby yielding

a unidimensional scale, can be tested with Andersen’s
likelihood ratio test [24]. Note that obeying a Rasch
model is a sufficient but not a necessary condition of
unidimensionality.

Estimation of the MAPR model
Estimation of the LLTM model is similar to estimation
of the Rasch model. Both procedures are based on the
fact that the number of worse health states per person is
a minimal sufficient statistic for θp. As a consequence,
the parameters αjk can be estimated without knowledge
of the patient’s health status (known as person-free item
assessment). Instead, finding the values for βI, that
maximize the (conditional) likelihood estimation of the
LLTM model, boils down to finding the values for αjk.

Comparing to
own condition

bestworst

Health-status scale

hypothetical multi-attribute description (e.g., health state)

Pain

Self-care

worse better

Score own health status Compare own health status with other states

Task I Task II

Health
indicator 1 

Health
indicator 7 

Is this state
better or worse
than your own
health
condition?

Indicate your
own health
status

Indicate your
own health
status

Fig. 3 MAPR measurement mechanism
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Both the existence and uniqueness of the CML esti-
mates depend on whether the data matrix is well con-
ditioned. A response matrix is said to be well
conditioned if in every possible partition of the health
states into two non-empty subsets some patients have
given a response of one on some health state in the
first set and a response of zero on some health state
in the second set [25, 26].
The fit of the MAPR model (LLTM) can be com-

pared with the fit of the Rasch model by using a like-
lihood ratio test. The deviance of − 2 log-likelihood of
the two nested models is approximately Χ2- distrib-
uted with df = difference between the number of pa-
rameters in the two models [18, 27]. When this test
is significant, there is evidence that health states are
not sufficiently described by the characteristics of the
health states as parameterized with the variables
djk(xi). In case there is no statistically significant dif-
ference between the Rasch model and the MAPR
model, the latter can be used to describe the values
of health states. Different formulations of LLTM
models can also be compared by performing a likeli-
hood test, as long as these models are nested.

Empirical study
Respondents
The aim of the empirical study was to show first ex-
ploratory results in testing the MAPR model. In order to
do so we used data from a previously published study
that aimed to explore discrepancies in values for health
states between the general population and patients that
experience specific illness [7]. For this study we used
only the data of the patients (n = 75).
Two patient groups from the Radboud University

Nijmegen Medical Center (Netherlands) participated in
that study, which was approved by the Central Commit-
tee on Research Involving Human Subjects (region Arn-
hem-Nijmegen) [7]. One group included patients who
were diagnosed with cancer within a time frame of 4–
6 weeks before they participated in the study. The other
group consisted of chronically ill patients living with the
symptoms of rheumatoid arthritis (RA) for at least 3 years.
The study protocol was administered face-to-face by a
trained interviewer at the homes of the patients.
This initial sample was extended by including patients

with a cerebrovascular accident (CVA) or inflammatory
bowel disease (IBD) from the hospital Medisch Spectrum
Twente (n= 35) and patients with liver disease or paraplegia
from the University Medical Center Groningen (n= 53).
The Medical Ethics Review Committee Twente (METC/
14124) and Medical Ethics Review Committee UMCG
(METC 2015/496) declared that this latter part of the re-
search did not fall under the Medical Research Involving
Human Subjects Act.

Study design
In the initial study (Radboud) the judgmental task con-
sisted of ranking 17 EQ-5D-3 L health states, supple-
mented with the patient’s own EQ-5D-3 L description,
‘dead’, and state ‘11111’. Each patient ranked the same 20
health states by putting the card with the ‘best’ health state
on top and the ‘worst’ at the bottom. Additionally, the pa-
tients unknowingly assessed their own health status in the
judgmental task, as their own EQ-5D-3 L health-state de-
scription had been incorporated in the set, but they did
not assess the health states of the other participants. The
task in the other two studies was slightly different (pa-
tients did not assess their own health status), but is not
likely affecting the results in the empirical study as de-
scribed in this article. Respondents in the latter two stud-
ies were asked to compare the same 17 EQ-5D-3 L health
states from the Radboud study with their own health (not
explicitly represented in terms of the EQ-5D-3 L descrip-
tion) and express if the EQ-5D-3 L health states was worse
or better than their own health status. In all three studies,
the EQ-5D-3 L health states were presented in random
order to control for potential biases due to presentation
order or respondent fatigue.

Analysis of the empirical study
First, we fit the Rasch model to the ranking data. Next,
we analyze the following (MAPR) model for the value of
health state βi:

βi ¼
X5
j¼1

X3

k¼1

αjkdjk xij
� �

; ð8Þ

a model with only main effects for all attributes (with
dummy variables). To ensure identification of the pa-
rameters αjk, an additional restriction has to be put on
these parameters; in this case we choose αjk = 0 for k =
1, j = 1, . . , 5.
Goodness of fit for the holistic MAPR (i.e., the Rasch)

model is tested with the Andersen LR test [28]. Then,
MAPR model (8) and the Rasch (i.e., the holistic MAPR)
model are compared (LR test, correlation coefficient).
Next, for every patient the predicted value of its health
state following from the estimated MAPR model (8) are
calculated based on the patient’s own EQ-5D-3 L descrip-
tion. For every health state shown to the patient, it is de-
termined whether the patient’s estimated health-status
value outperforms (i.e., is preferred by the patient) the es-
timated value of the shown comparator health state. These
predicted preferences will then be compared with the ob-
served preferences using a kappa coefficient as measure of
agreement. A kappa larger than 0.75 is considered excel-
lent and between 0.4 and 0.75 fair to good [29]. The eRM
package in R was used to estimate the MAPR models
(LLTM model) and the Rasch model [30].
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Results
In total 163 patients were interviewed for this study. Of
these, 48 were cancer patients (34 colorectal cancer, 14
breast cancer) and 42 had a liver-related disease or
transplant. The number of participating RA patients was
27. The mean age differs across the participating hospi-
tals, with the oldest patients coming from the Radboud
Medical Center (Table 1). Overall, some or major prob-
lems were reported for pain (60.1%) and the least prob-
lems were reported for self-care (17.8%). Major or severe
problems for self-care and mood were reported only by
patients with liver-related disease or transplant or by
paraplegic patients (Table 2). As the distribution of the
health states across the study sites shows, the UMCG
had more patients with a severe health condition. But
there was a reasonable spread over the whole HRQoL
continuum for the three hospitals (Additional file 1).

The Guttman scalogram reveals that not all health
states and persons are perfectly ordered (Fig. 4), this
can be seen from the green dots between the red ones
that indicate misfit. Given the small number of health
states in relation to the small number of patients, this
study showed that the Rasch (holistic MAPR) model
does not hold on statistical grounds. However, after
deleting health states in the analysis that were rather
severe and therefore overly judged as worse than the
own health conditions of the patients (states: 32211,
33323, 32223, 11133, 32313, 22222, 33333, and 23232)
the holistic model does hold. An Andersen LR-test
showed a log likelihood value of 7.21 with 8 dfs (p =
0.514). The order of the health states based on their
sum score is similar to the order based on the estimates
of the Rasch model. This result is as expected since the
sum score is a sufficient statistic for the Rasch model.
The Person-Item Map shows the distribution of pa-
tients’ own health status (the above histogram) com-
pared to the assessed health states, see the histogram
below (Fig. 5). This figure shows that more than half of
the judged comparator health states were assessed as
worse than the patient’s health status.

Table 1 Characteristics and evaluation assessment of the study
population (n = 163)

Radbouda

(n = 75)
MST
(n = 35)

UMCG
(n = 53)

Mean Age, yrs. (sd) 63.6 (9.4) 53.0 (21.4) 48.3 (17.8)

Gender (%)

Female 36 (50.0) 20 (57.1) 27(50.9)

Male 36 (50.0) 15 (42.9) 26 (49.1)

Diagnosis (%)

Liver transplant 15 (28.3)

Liver-related disease? 27 (50.9)

CVA 13 (37.1)

IBD 22 (62.9)

Cancer 48 (64.0)

RA 27 (36.0)

Paraplegic 9 (17.0)

Other/Unknown 2 (3.8)

Education (%)

Lower 41 (54.7) 6 (17.1) 19 (35.8)

Middle 15 (20.0) 19 (54.3) 6 (11.3)

Upper 19 (25.3) 10 (28.6) 20 (37.7)

Other 8 (15.1)

Mean EQ VAS (sd) 75.2 (14.7) 68.5 (13.5) 72.1 (17.5)

Difficulty assessment (%)

Very easy – 10 (28.6) 9 (17.0)

Easy – 16 (45.7) 17 (32.1)

Neutral – 5 (14.3) 20 (37.7)

Difficult – 2 (5.7) 6 (11.3)

Very difficult – 2 (5.7) 1 (1.9)
aRadboud = Radboud University Nijmegen Medical Center,
MST hospital Medisch Spectrum Twente, UMCG University Medical
Center Groningen

Table 2 Marginal distribution of patients’ own classification of
their health status based on the five attributes, each with three
levels, of the EQ-5D-3 L instrument (n = 163)

EQ-5D-3 L attributes and levels Radbouda

(n = 75)
MST
(n = 35)

UMCG
(n = 53)

Mobility

No problems (1) 45 (60.0) 20 (57.1) 29 (54.7)

Some problems (2) 30 (40.0) 15 (42.9) 18 (34.0)

Confined to bed (3) 6 (11.3)

Self-care

No problems (1) 63 (84.0) 31 (88.6) 40 (75.5)

Some problems (2) 12 (16.0) 4 (11.4) 10 (18.9)

Unable to (3) 3 (5.7)

Usual activities

No problems (1) 38 (50.7) 12 (34.3) 26 (49.1)

Some problems (2) 34 (45.3) 21 (60.0) 24 (45.3)

Unable to (3) 3 (4.0) 2 (5.7) 3 (5.7)

Pain/Discomfort

No (1) 34 (45.3) 13 (37.1) 18 (34.0)

Moderate (2) 36 (48.0) 21 (60.0) 32 (60.4)

Extreme (3) 5 (6.7) 1 (2.9) 3 (5.7)

Depression/Anxiety

Not (1) 59 (78.7) 25 (71.4) 36 (67.9)

Moderately (2) 16 (21.3) 10 (28.6) 12 (22.6)

Extremely (3) 5 (9.4)
aRadboud Radboud University Nijmegen Medical Center, MST hospital Medisch
Spectrum Twente, UMCG University Medical Center Groningen
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The estimated regression coefficients for MAPR model
(8) reveal logical differences at all levels (Table 3). Some
problems with self-care have the highest impact,
followed by some problems with mood, pain, mobility,
and usual activities. Severe problems with mood and
pain have more impact than the other attributes. Esti-
mates of the health states under the MAPR model (8)
give almost the same order as for the Rasch model
(Table 4). For the MAPR model, the pairs (11211,
21111), (11131, 11113), and (23232, 32223) have a differ-
ent order and the estimated value of health state 33323
is much smaller than in the Rasch model.
When comparing the conditional likelihood for the

Rasch model and the MAPR model, we found a statis-
tical difference (LR statistic = 87.9; df = 6; p < 0.001). This
means that the goodness of fit of the MAPR model is
lower than for the Rasch (the holistic MAPR) model.
However, the correlation between the item parameters
as estimated with the Rasch model and the item parame-
ters of MAPR model is 0.93, so even the elaborated
MAPR model performs well in explaining the item pa-
rameters. In 88.2% of the comparisons, the observed
preferences agree with the predicted preferences based
on the MAPR model. The kappa coefficient equals 0.71
(CI: 0.68–0.74), which is considered fair to good.

Discussion
This article presents a novel approach to measuring
health: the multi-attribute preference response model
(MAPR). It was developed to quantify health states and
patients’ own health status on the same unidimensional

Fig. 4 Guttman scalogram (green dots between red ones
show misfit)

Fig. 5 The estimated values based on the holistic MAPR model on
the latent scale of the items (below: small red bars) are given next
to the histogram of the person-parameter distribution (above)
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scale. The response mechanism of this model is insensi-
tive to various biases (e.g., time preference, risk aversion,
indifference procedure) that arise with conventional
methods (i.e., standard gamble, time trade-off ) to derive
values for health states. Moreover, this is the first generic
health preference-based model that fully reflects percep-
tion and reporting by patients. Besides being grounded
in measurement theory, the response tasks are attractive
and easy to perform in a self-completion setting.
The small study that we conducted to illustrate the

procedure and results of our proposed method to meas-
ure the quality of health states and patients’ own health
status showed confirming results. Although the sample
size of our empirical study was very modest for perform-
ing an item response theory analysis as done here, the
estimated regression weights showed a clear logical
structure. Values for the small set of health states in-
cluded in this study could be computed and showed a
valid order of the health states as well as interpretable
distances between the health states, compared with re-
sults from previous large studies based on conventional
measurement methods. Note that in this small study a
fixed set of only 17 health states were used and therefore
we could not include interaction terms in the regression

equation. In the full operational MAPR model patients
will not be confronted with a fixed set of states, but with
a smaller set of health-state descriptions that are closely
similar to their own health status. This will lead to more
efficient and robust estimation of the parameters.
The MAPR model largely eliminates unwanted mecha-

nisms affecting valuations of health states. Prominent
among these is adaptation. Health-state values derived
by conventional methods are typically higher when elic-
ited from patients, particularly those with chronic illness
or disability, than from non-patients who only imagine
themselves in hypothetical health conditions. Adaptation
is manifest in almost all standard methods of health
measurement, particularly in multi-domain instruments,
often based on Likert scales as developed within the set-
ting of classical test theory [31]. Moreover, conventional
methods for valuing health states stemming from eco-
nomics (e.g., standard gamble, time trade-off ) are also
complex and require abstract reasoning skills. These
drawbacks can now be averted. Measurement with the
MAPR model is based on a discrimination principle: a
patient’s own health status serves as a comparator state

Table 3 Parameter estimates (se) of MAPR model (Eq. 8) for the
levels 2 and 3 of the five health attributes of the EQ-5D-3 L
instrument

EQ-5D-3 L attributes and levels Estimates

α (se)

Mobility

No problems (1) –

Some problems (2) −0.274 (0.229)

Confined to bed (3) −2.909 (0.419)

Self-care

No problems (1) –

Some problems (2) −1.626 (0.221)

Unable to (3) −3.554 (0.356)

Usual activities

No problems (1) –

Some problems (2) −0.548 (0.221)

Unable to (3) −1.479 (0.307)

Pain/Discomfort

No (1) –

Moderate (2) −0.752 (0.212)

Extreme (3) −3.548 (0.282)

Depression/Anxiety

Not (1) –

Moderately (2) −1.527 (0.217)

Extremely (3) −3.352 (0.274)

Table 4 Comparison of sum score, health-state estimates based on
Rasch (holistic MAPR) model, MAPR model (LLTM). The absolute
differences in outcome between the Rasch model (holistic MAPR)
and the LLTM (MAPR) model are due to scaling and should be
ignored

EQ-5D-3 L health
statea

Sum
score

Rasch (Holistic MAPR)
model

MAPR (LLTM)
model

11111 2 b 0.000

11211 57 4.761 −0.548

21111 60 4.555 −0.274

11121 63 4.358 −0.752

11112 76 3.575 − 1.527

12111 79 3.406 −1.626

11113 122 0.956 −3.006

11131 129 0.482 −3.548

11113 130 0.410 −3.352

13311 142 −0.605 −4.306

22222 142 −0.605 −4.728

32211 151 −1.733 −5.083

11133 152 −1.903 −6.900

32313 156 −2.780 −9.366

33323 157 −3.087 −12.045

23232 157 −3.087 −9.451

32223 159 −3.960 −9.187

33333 160 −4.742 −14.841
aCode is representing the five attributes, each with three levels, of the
EQ-5D-3 L instrument
bNo estimate is obtained since the data matrix is ill-conditioned when this
state is included
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against other (comparator) states. This indirect approach
to derive values for health states is different from the
conventional valuation techniques used by health econo-
mists. These valuation techniques (e.g., standard gamble,
time trade-off ) request a direct and absolute score (mo-
nadic measurement). Because the response task in the
MAPR model is simply a preference (rank order) be-
tween a patient’s own health status (that serves as a ref-
erence standard) and a (closely) related hypothetical
health state, the assessment is less likely affected by ‘sub-
jective’ motives and easier to accomplish. Patients don’t
quantity their own health status, they only compare it
and rank it. This mode of measurement largely prevents
biases such as adaptation and coping. From a theoretical
and a practical point of view, the MAPR is more attract-
ive than the existing valuation methods, particularly be-
cause both the judgmental task and the analysis are
executed within one unifying framework.
A downside of the MAPR model is that it produces rela-

tive positions of health states. For application in DALYs
and QALYs, however, MAPR-derived values need to be
rescaled around the position where states are considered
to become worse than dead (position of dead = 0) [32, 33].
In conventional valuation methods, ‘dead’ is not only an
element of the task itself but also introduces many meth-
odological and practical problems. Separate exercises are
needed to localize the position of ‘dead’ for the MAPR
model. However, recent studies suggest promising solu-
tions; separate studies can be conducted to localize the
juncture where health states are considered worse than
dead [34, 35]. Such additional studies probably are better
be worked out based on the input from a sample of the
general population, instead of patients.
When applying any conventional Rasch model to derive

metric measures, it is assumed that the underlying phe-
nomena can be represented on a unidimensional scale.
However, this crucial assumption may be questionable
when quantifying a subjective phenomenon such as health,
a construct with a rather broad scope. Nevertheless, the
overall assumption is that health outcomes such as health
status, health-related quality of life, and well-being are uni-
dimensional concepts. Of course, this is true of all data to
some extent. As many researchers have convincingly ar-
gued, unidimensionality does not imply only one factor or
dimension. Rather, it implies the presence of a dominant di-
mension and possibly of minor dimensions that do not
affect the dominant one and the unidimensionality of the
model is therefore a reflection of the assumed unidimen-
sionality of the majority of assessments we use [36]. Our
health model is comparable to widely accepted models of
intelligence. Typically, cognitive abilities are represented as
a three-level hierarchy with numerous narrow factors at the
bottom, a handful of broad, more general factors at the
intermediate level, and at the apex a single factor, the g

factor, which stands for the variance common to all cogni-
tive tasks [37].
The MAPR model can even be extended to offer re-

spondents a large set of candidate attributes (far more
than the traditional four to nine attributes in existing in-
struments). An individual patient could then select those
most relevant to his or her assessment. By breaking the
fixed-set mold, this MAPR variant leads to a truly
patient-centered preference-based health measurement
approach. An extended MAPR model would most likely
require thousands and thousands of responses from pa-
tients. Some solutions for this problem have already
been introduced [22, 38, 39].
An alternative method to quantify health states may

be the discrete choice (DC) model [40, 41]. It is based
on (paired) comparisons of two or more hypothetical
health states (and not a person’s health status itself ). In
that sense, the difference between the MAPR model and
the DC model seems only minor, but in fact it is signifi-
cant. The DC model only scales health states, not re-
spondents (patients).
Several elements related to the MAPR model must be

investigated empirically to confirm the assumptions
underpinning it and explore its potential limitations. In
particular, the data should show a Guttman structure. As
data for the MAPR model is collected in patient groups,
suboptimal response data may result. This may be due to
problems with interpreting the health attributes and their
levels, from taking cognitive shortcuts and other factors.

Conclusions
This new patient-reported health IRT model can be used
as a coherent measurement method and has a profound
connection to measurement theories. Apart from develop-
ing instruments that can be used in medical settings, the
MAPR model can also be used to develop health-outcome
instruments to measure in health care. Operated by dedi-
cated data collection technology with interactive routines,
data capturing based on this new measurement method
becomes simple and even certain distinct patient popula-
tions can be easily approached (e.g., children, elderly). In
principle, the MAPR model may be suitable to measure
other unidimensional phenomena such as well-being, cap-
abilities, and other subjective attributes that are essentially
based on quality [42].

Endnote
1For example, suppose that two attributes take values

1 to 3. Thus xi = (xi1, xi2) ∈ {1, 2, 3} × {1, 2, 3}. Since
x2=(1,2) is worse than x1=(1,1), we obtain an ordering in
the alphas. Due to the ordering we have β1 < β2, which
implies β1 = α1, 1 + α2, 1 < α1, 1 + α2, 2 = β2 and thus α j;k1

< α j;k2when k1 < k2.
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