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Abstract

After 40 years of deriving metric values for health status or health-related quality of life, the effective quantification of
subjective health outcomes is still a challenge. Here, two of the best measurement tools, the discrete choice and the Rasch
model, are combined to create a new model for deriving health values. First, existing techniques to value health states are
briefly discussed followed by a reflection on the recent revival of interest in patients’ experience with regard to their
possible role in health measurement. Subsequently, three basic principles for valid health measurement are reviewed,
namely unidimensionality, interval level, and invariance. In the main section, the basic operation of measurement is then
discussed in the framework of probabilistic discrete choice analysis (random utility model) and the psychometric Rasch
model. It is then shown how combining the main features of these two models yields an integrated measurement model,
called the multi-attribute preference response (MAPR) model, which is introduced here. This new model transforms
subjective individual rank data into a metric scale using responses from patients who have experienced certain health
states. Its measurement mechanism largely prevents biases such as adaptation and coping. Several extensions of the MAPR
model are presented. The MAPR model can be applied to a wide range of research problems. If extended with the self-
selection of relevant health domains for the individual patient, this model will be more valid than existing valuation
techniques.
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Introduction

The measurement of health, which is defined as assigning

meaningful numbers to an individual’s health status, has

proliferated ever since the World Health Organization (WHO)

provided its definition of health in 1946 [1]. It wasn’t until 1970

that Fanshel and Bush introduced the first instrument that was

able to capture an individual’s health state in a single metric value

[2]. Access to single metric values for health states is advantageous

as these can be used in health outcomes research, disease modeling

studies, economic evaluations, and to monitor the health status of

patient groups in the general community. Often the values for

health states are expanded by combining it with the duration of

these states to obtain health summary measures. A well known

example of such a summary measure is the disability-adjusted life

years (DALYs) approach that is being used by the WHO to

compare different countries with one another on diverse aspects of

health. Health economists often apply a rather comparable health

summary measure, namely the quality-adjusted life year (QALY).

To quantify health states, these must be described and classified

in terms of seriousness and assigned meaningful values (variously

called utilities, strength of preference, index, or weights). The first

step is thus to clarify the concept of health status. Essentially an

umbrella concept, it covers independent health domains that

together capture the not yet well defined notion of health-related

quality of life (HRQoL). The second step is to assign a value to the

health-state description by means of an appropriate measurement

procedure. In the past, several measurement models have been

developed to quantify subjective phenomena and some of these

models have found their way into the valuation of health states.

Although the scientific enterprise of measuring health states has

been going on for about 40 years, there are still concerns about

validity.

The aim of this paper is to forge a linkage between two

prominent measurement models to create a single general model

that – at least in principle – resolves many of the problems posed

by widely used but inferior valuation techniques. This new

measurement framework for deriving health-state values is called

the multi-attribute preference response (MAPR) model. It

combines the characteristics of hypothetical health states with a

respondent’s health-status characteristics to quantify both the

hypothetical states as well as the location of the patients’ s state. In

theory, this new model even allows individuals to choose the

attributes (i.e., health domains) describing their health states. A

health measurement model with such potential flexibility is

unprecedented.

The first section of the paper presents some concerns about the

validity of current health-state valuation techniques followed by a

section about the basic measurement principles of subjective

phenomena (such a health). The next section explains the

probabilistic discrete choice model and expands on its relationship

to measurement models used in economics and psychology. The

subsequent section sketches the history of the Rasch model and

summarizes its underlying theory. Finally, the merits of integrating
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these two measurement models into the MAPR model are

discussed. All examples and suggestions in this article apply to

health-state valuation. It should be kept in mind that because the

MAPR model is very general, it can also be applied in a number of

other fields where the goal is to quantify other subjective

phenomena.

Existing Valuation Techniques

The standard gamble (SG) and time trade-off (TTO) are

frequently used to assign values to health states. The former

emerged from the field of economics, the latter from the area of

operations research [3,4]. SG, for years the gold standard, was

developed under the expected utility theory of von Neumann and

Morgenstern [3]. But as experience shows, assumptions underlying

this theory were systematically violated by human behavior. In

general, people have difficulty dealing with probabilities and may

have an aversion to taking risk. As an alternative, Torrance and

colleagues developed TTO, which is simpler to administer than

SG. The main drawback of TTO is that the relationship between

a health state, its duration, and its value is collapsed into a single

measure. The problem is that this requires the values for health

states to be independent of the duration of these states. Health-

state values have also been derived by another technique, the

visual analogue scale (VAS), which stems from the field of

psychology [5]. Unfortunately, all of these conventional measure-

ment techniques (SG, TTO, VAS) have theoretical and empirical

drawbacks when used to value health states. With the possible

exception of the VAS, they put a large cognitive burden on the

respondents by demanding a relatively high degree of abstract

reasoning [6]. The person trade-off (PTO) is another technique

that has been used mainly in the area of policy making [7]. This

technique was named by Nord [8], but the technique itself was

applied earlier by Patrick et al. [9]. The PTO asks respondents to

answer from the perspective of a social decision-maker considering

alternative policy choices.

The currently dominant valuation technique for quantifying

health states, certainly in the field of health economics, is the time

trade-off (TTO). It may be intuitively appealing for three reasons.

First, it seems to reflect the actual medical situation. Second, it

shows some correspondence to the general health-outcome

framework (since the TTO is essentially a QALY equivalence

statement). And third, it is grounded in economic thinking (the

trade-off principle). Nevertheless, compelling arguments against

the TTO have been raised by several authors [10,11,12,13,14]. In

fact, TTO seems to be associated with many problems: practical

(difficult for people to perform), theoretical (axiomatic violations,

problems in dealing with states worse than dead), and biases (time

preference). From a measurement perspective, the TTO technique

has been criticized for its susceptibility to framing issues (e.g.,

duration of the time frame, indifference procedure, states worse

than dead). The same holds for the recently introduced technique

known as lead-time TTO [15].

Patients versus General Population
Conventionally, values for the health states used in economic

evaluations are derived from a representative community sample

[16], or in the case of the DALY approach, values for disease states

were derived from medical experts [17]. Besides asserting that a

sample of the general population is a reflection of the average

taxpayer, which is considered fair grounds for arriving at resource

allocation, other arguments are put forward. For example, it has

been noted that patients may adapt to their health state over a

period of time. As a result, they may assign higher values to their

own poor health state. Patients may also strategically underrate the

quality of their health state, knowing they will directly benefit from

doing so (e.g., certain patient groups may be considered as more

relevant by policy makers, or effects in cost-effectiveness studies

may show more favorable results). The proposition held in this

paper is that while adaptation is a real phenomenon, this effect can

largely be reduced and eventually eliminated if the health-state

values are derived in a fitting measurement framework. Moreover,

it is reasonable to assume that healthy people may be inadequately

informed or lack the imagination to make an appropriate

judgment on the impact of severe health states. This is one of

the reasons why researchers in the field of HRQoL are engaged in

a debate about which values are more valid [18,19]. Many

researchers assert that individuals are the best judges of their own

health status [20]. Therefore, in a health-care context, it is sensible

to defend the position that, from a validity perspective, it is the

patient’s judgment that should be elicited in order to arrive at

health-state values, not that of a sample of unaffected members of

the general population. This explains the rise of the so-called

patient-reported outcome measurement (PROMs) movement [21].

Voices from another area have also stressed that such assessments

from patients (experienced utility) should get more attention

[22,23].

Measurement Principles

Interval Level
There are theoretical and methodological differences between

the direct valuation techniques (SG, TTO, VAS) and indirect

(latent) measurement models such as probabilistic discrete choice

(DC; see next section). But they all assume that individuals possess

implicit preferences for health states that range from good to bad.

And all of the models maintain that it should be possible to reveal

these preferences and express them quantitatively. Accordingly,

differences between health states should reflect the increments of

difference in severity of these states. For that reason, informative

(i.e., metric) outcome measures should be at least at the interval

level (cardinal data). This means that measures should lie on a

continuous scale, whereby the differences between values would

reflect true differences (e.g., if a patient’s score increases from 40 to

60, this increase is the same as from 70 to 90). To arrive at health-

state values with these qualities, two other basic measurement

principles should be fulfilled, namely unidimensionality and

invariance.

Unidimensionality
The overall goal is to use health-state values for computational

procedures (e.g., computing QALYs, Markov modeling). For that

reason, informative (i.e., metric) outcome measures should be at

least at the interval level. This implies positioning the values on an

underlying unidimensional scale ranging from the worst health

state to the best one. An (implicit) assumption made in the field of

health-state valuation is that, in general, individuals evaluate

health states similarly, which permits the aggregation of individual

valuations to arrive at group or societal values. Specific analyses

can be applied to find empirical evidence that health-state values

represent a unidimensional structure. An early application of the

statistical singular value decomposition routine compared TTO

and VAS valuation data. The results showed a clear two-

dimensional structure for the TTO [24]. Heterogonous responses

(or even distinct response structures) by individuals may indicate

that the phenomenon under study (health states) is not character-

ized as unidimensional or that a certain valuation technique is less

appropriate for the task, since it may not fulfill the need for

Health Measurement Model

PLOS ONE | www.plosone.org 2 November 2013 | Volume 8 | Issue 11 | e79494



unidimensional responses. Therefore, it is important to determine

how similar individuals’ judgments (inter-rater reliability) actually

are.

Invariance
Invariance is a critical prerequisite for fundamental measure-

ment (see section: Rasch model). It means that the outcome of

judgments between two (or more) health states should not

dependent on which group of respondents performed the

assessments. The resulting judgments among health states should

also be independent of the set of health states being assessed [25].

In the setting of health-state valuation the invariance principle

appears to be closely related to the unidimensionality requirement.

Rasch models embody the invariance principle. Their formal

structure permits algebraic separation of the person and health-

state parameters. Specifically, the person parameter can be

eliminated during the process of statistical estimation of the

health-state parameters. Not surprisingly, the invariance principle

is a key characteristic of measurement in physics [25].

Discrete Choice Model

Background
Modern probabilistic discrete choice (DC) models, which come

from econometrics, build upon the work of McFadden, the 2000

Nobel Prize laureate in economics [26]. DC models encompass a

variety of experimental design techniques, data collection proce-

dures, and statistical procedures that can be used to predict the

choices that individuals will make between alternatives (e.g., health

states). These techniques are applicable when individuals have the

ability to choose between two or more distinct (‘discrete’)

alternatives.

In the mid-1960s McFadden was working with a graduate

student, Phoebe Cottingham, trying to analyze data on freeway

routing decisions as a way to study economic decision-making

behavior. He developed the first version of what he called the

‘conditional multinomial logistic model’ (also known as the

multinomial logistic model and conditional logistic model).

McFadden proposed an econometric model in which the utilities

of alternatives depend on utilities assigned to their attributes, such

as construction cost, route length, and areas of parkland and open

space taken up [27]. He developed a computer program that

allowed him to estimate this probabilistic model, which was based

on an axiomatic theory of choice behavior developed by the

mathematical psychologist Luce [28].

The DC strategy was conceived in transport economics and

later disseminated into other research fields, especially marketing.

There, DC modeling was applied to analyze behavior that could

be observed in real market contexts. Instead of modeling the

choices people actually make in empirical settings, Louviere and

others started to model the choices made by individuals in

carefully constructed experimental studies [29]. This entailed

presenting the participants with profiles containing features of

hypothetical products. Originally, these profiles were known as

simulated choice situations, but later they were called discrete

choice experiments (DCEs). So, instead of modeling actual

choices, as McFadden had with the revealed preferences

approach, Louviere modeled choices made in experimental studies

with the stated preferences approach. This new approach also

made it possible to predict values for alternatives that could not be

judged in the real world. More recently, DC models have been

used as an alternative way to derive people’s values for health

states [30,31,32].

Measurement Model
The statistical literature classifies DC models among the

probabilistic choice models that are grounded in modern

measurement theory and consistent with economic theory (e.g.,

the random utility model) [33]. What all DC models have in

common is that they can establish the relative merit of one

phenomenon with respect to others. If the phenomena are

characterized by specific attributes or domains with certain levels,

extended DC models such as McFaddens’ model would permit

estimating the relative importance of the attributes and their

associated levels. DC modeling has good prospects for health-state

valuation [32,34,35,36,37,38]. Moreover, DC models have a

practical advantage: when conducting DCEs, health states may be

evaluated in a self-completion format. The scope for valuation

research is thereby widened. Most TTO protocols for deriving

values for preference-based health-state instruments are interview-

er-assisted, as studies have clearly showed that self-completion is

not feasible or leads to inaccurate results [39]. The simplicity of

DC tasks, however, facilitates web-based surveys [38].

Discrimination mechanism. The modern measurement

theory inherent in DC models builds upon the early work and

basic principles of Thurstone’s Law of Comparative Judgment

(LCJ) [40,41]. In fact, the class of choice- and rank-based models,

with its lengthy history (1927 to the present), is one of the few areas

in the social and behavioral sciences that has a strong underlying

theory. It was Thurstone who introduced the well-known random

utility model (RUM), although he used different notation and

other terminology. The use of Thurstone’s model based on paired

comparisons to estimate health-state values was first proposed by

Fanshel and Bush [2] in one of the earliest examples of a

composed QALY index model.

In Thurstone’s terminology, choices are mediated by a

‘discriminal process’. He defined this as the process by which an

organism identifies, distinguishes, or reacts to stimuli. Consider the

theoretical distributions of the discriminal process for any two

objects (paired comparisons), like two different health states s and t.

In the LCJ model, the standard deviation of the distribution

associated with a given health state is called the discriminal

dispersion (or variance, in modern scientific language) of that

health state. Discriminal dispersions may differ for different health

states.

Let vs and vt correspond to the scale values of the two health

states. The difference (vs–vt) is measured in units of discriminal

differences. The complete form of the LCJ is the following

equation.

vs{vt~zst

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

s zs2
t {2rstssst

q
ð1Þ

where ss, st denotes the discriminal dispersions of the two health

states s and t, rst denotes the correlation between the pairs of

discriminal processes s and t, and zst is the unit normal deviate

corresponding to the theoretical proportion of times health state s

is judged greater than health state t. The difference is normally

distributed with mean vs – vt and variance s2
st corresponding toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
s zs2

t {2rstssst

p
, which reflects the standard deviation of the

difference between two normal distributions. In its most basic form

(Case V) the model can be represented as vs{vt~zst, for which

the probability that state s is judged to be better than state t is.

Pst~W
vs{vt

sst

� �
ð2Þ
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where W is the cumulative normal distribution with mean zero and

variance unity.

The discrimination mechanism underlying the LCJ is an

extension of the ‘just noticeable difference’ that played a major

role in early psychophysical research, as initiated by Fechner

(1801–1887) and Weber (1795–1878) in Germany. Later on

similar discrimination mechanisms were embedded in ‘signal

detection theory’, which was used by psychologists to measure the

way people make decisions under conditions of uncertainty. Much

of the early work in this research field was done by radar

researchers [42].

Random utility model. Thurstone proposed that perceived

physical phenomena or subjective concepts (e.g., health states,

treatment outcomes, process characteristics) can be expressed as

that a respondent r has a latent value (utility) for state s, Urs, which

includes a systematic component and an error term (This is equal

to the fundamental idea of true score theory or classical test theory.

The latter also consists of an observed score with two components,

namely the true score and an error term. It too summarizes

different health domains by combining the scores on several

items.):

Urs~vszers ð3Þ

Here, v is the measurable component and is not determined by

characteristics of the respondents. In other words, a given health

state has the same expected value across all respondents. The

assumption in the model proposed by Thurstone is that e is

normally distributed. This assumption yields the probit model.

The choice probability is Prs = Pr(Urs.Urt, all t not equal to s),

which depends on the difference in value, not on its absolute level.

The fact that only differences in value matter has implications for

the identification of this model and all its derivates. In particular, it

means that the only parameters that can be estimated are those

that capture differences across alternatives.

So, in Thurstone’s LCJ, the perceived value of a health state

equals its objective level plus a random error. The probability that

one health state is judged better than another is the probability

that this alternative has the higher perceived value. When the

perceived values are interpreted as levels of satisfaction, HRQoL,

or utility, this can be interpreted as a model for economic choice in

which utility is modeled as a random variable. This assertion was

made in 1960 by the economist Marschak, who thereby

introduced Thurstone’s work into economics. Marschak called

his model the random utility maximization hypothesis or RUM

[43,44]. Like neoclassical economic theory, the RUM assumes that

the decision-maker has a perfect discrimination capability. But it

also assumes that the analyst has incomplete information, which

implies that uncertainty (i.e., randomness) must be taken into

account.

Multinomial model. Another way to analyze comparative

data is with the Bradley-Terry-Luce (BTL) model, which was

statistically formulated by Bradley and Terry in 1955 [45] and

extended by Luce in 1959 [28] (Later it was recognized that the

German mathematician Ernst Zermelo had already published

about a probabilistic paired comparison model [46]). The BTL

models extends the Thurstone model by allowing a person to

choose among more than two options. It postulates that

measurement on a ratio scale level can be established if the data

satisfy certain structural assumptions [47]. For mathematical

reasons the BTL model is based on the simple logistic function

instead of the normal distribution of the Thurstone model. It is this

mathematical model that McFadden used to develop and

construct his own specific type of multinomial logit model. If only

pairs of alternatives are judged, the BTL model is nearly identical

to Thurstone’s model. However, when more than two alternatives

are judged, an important mathematical assumption must be made,

namely the independence of irrelevant alternatives (see below).

Drawing upon the work of Thurstone, Luce, Marschak, and

Lancaster [48], McFadden was able to show how his model fit in

with the economic theory of choice behavior. McFadden then

investigated further the RUM foundations of the conditional

multinomial logistic model. He showed that the Luce model was

consistent with the RUM model with IID (independent and

identically distributed random variables) additive disturbances if

and only if these disturbances had a distribution called extreme

value type I. More importantly, instead of one function, as in the

classical Thurstone model (only values for health states can be

estimated), the conditional multinomial logistic model comprises

two functions. First, it contains a statistical model that describes

the probability of ranking a particular health state higher than

another, given the (unobserved) value associated with each health

state. Secondly, it contains a valuation function that relates the

value for a given health state to a set of explanatory variables (it

will be shown that the same holds for the MAPR model).

Assumptions. Multinomial logistic regression (MNL) is based

on three assumptions: (i) independence of irrelevant alternatives

(IIA); (ii) error terms are independent and identically distributed

across observations (IID); and (iii) no taste heterogeneity (i.e.,

homogeneous preferences across respondents). Luce’s choice

axiom states that the probability of selecting one item over

another from a pool of many items is not affected by the presence

or absence of other items in the pool (IIA assumption). The axiom

states that if A is preferred to B out of the choice set {A, B}, then

introducing a third, irrelevant, alternative X (thus expanding the

choice set to {A, B, X}) should not make B preferred to A. In other

words, whether A or B is better should not be changed by the

availability of X. The IIA axiom simplifies experimental collection

of choice data by allowing multinomial choice probabilities to be

inferred from binomial choice experiments. It is clear that

assumptions i and iii bear some relation to the invariance principle

from measurement theory.

Mathematics
In conditional logistic regression, none, some, or all of the

observations in a choice set may be marked. McFadden’s choice

model (discrete choice) is thus a special case of multinomial logistic

regression. In the conditional logit (CL) model, the explanatory

variables assume different values for each alternative and the

impact of level changes is assumed to be constant across

alternatives. The model may be summarized as shown below

(Formula 4):

vrs~zrs ª ð4Þ

whereby v are latent values or utilities of individuals choosing

health state s, zrs indicates a vector of alternative-specific explanatory

variables for individual r, and c represents a single vector of

unknown regression coefficients. Under the assumptions described

above, the probability that health state s is chosen is equal to:

Prs~
e( vrs)

PK
k~1

e(vrk)

ð5aÞ

or,
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Prs~
e( zrs ª)

PK
k~1

e
(z

rk
ª)

ð5bÞ

where, K (one k has to be set as reference) is the number of

alternatives (e.g., health states) in the choice set (e.g., 2 in most DC

applications) and s is the chosen alternative.

The term multinomial logit (MNL) model refers to a model that

generalizes logistic regression by allowing more than two discrete

outcomes. It assumes that data are case-specific; that is, each

independent variable has a single value for each case. Consider an

individual choosing among K alternatives in a choice set. Let xr

represent the characteristics of individual r and bs the regression

parameters.

~vvrs~xrbs ð6Þ

The probability that individual r chooses health states s is:

Prs~
exrbs

PK
k~1

exrbk

: ð7Þ

Both models can be used to analyze an individual’s choice

among a set of K alternatives. The main difference between the

two is that the conventional MNL model focuses on the individual

as the unit of analysis and takes the individual’s characteristics as

explanatory variables. The CL model, in contrast, focuses on the

set of alternatives for each individual, while the explanatory

variables are characteristics of those alternatives.

It is possible to combine these two models. Doing so would

simultaneously take into account the characteristics of both the

alternatives and the individual characteristics, using them as

explanatory variables. This combination is sometimes called a

conditional MNL or mixed model:

~~vv~vvrs~xrbsz zrsª: ð8Þ

Where ~~vv~vvrs is the value of the alternative s assigned by the

individual r. That value (~~vv~vvrs) depends on both the alternative

characteristics x and on the individuals’ characteristics z. The

probability that individual r chooses health states s is:

Prs~
e(xrbsz zrs ª)

PK
k~1

e(xrbszzrs ª)

: ð9Þ

The most commonly applied types of DC models are presented

above. A clear distinction is made between models that take an

individual’s characteristics as explanatory variables (MNL) and

models with explanatory variables for characteristics of alternatives

(i.e., health states). In the next section the Rasch model will be

explained. It will be shown that this model has a close similarity to

the CL model (Equation 5). As the basic data structure underlying

the Rasch measurement model should meet the invariance

assumption (see ‘measurement principles’), this rules out incorpo-

rating elements of the MNL model (Equation 6–9).

Rasch Model

Background
The Rasch model – named after the Danish mathematician,

statistician, and psychometrician Georg Rasch (1901–1980) – is a

probabilistic measurement model. While primarily employed in

attainment assessment, it is increasingly used in other areas [49].

Its original setting was the field of reading skills, where it was

intended for dichotomous response data (e.g., right/wrong). The

field of health outcomes research has shown considerable interest

in the topic of Rasch modeling. Recently, attempts have been

made to apply the Rasch model to specific HRQoL domains (e.g.,

pain, depression, mobility) [50,51].

Rasch did not start from real data but rather from an axiomatic

definition of measurement. He formulated a ‘model’, i.e., an

equation, fixing the ‘ideal’ relationship between the observation

and the amount of the latent trait (i.e., variables that are not

directly observed but are inferred, such as utility). At least three

features of this relationship should be highlighted. First, the

observed response (e.g., pass/yes/agree/right = l, rather than fail/

no/disagree/wrong = 0) depends on the difference between only

two parameters, the ‘ability’ of the individual and the ‘difficulty’ of

the item. No extraneous factors should bias this linear relationship.

Second, ‘ability’ and ‘difficulty’ are independent of each other. As

stated before, this invariance principle is also a theoretical

requirement for measurement in the realm of physics. In his

‘separability theorem’, Rasch demonstrated that his model is the

only one that satisfies this requirement. Third, the model is

probabilistic: uncertainty surrounds the expected response, which

is consistent with the real world situation.

A key element of the Rasch model is that the goal is to construct

procedures or operations that provide data that meet the relevant

criteria [52]. It should be noted that the Rasch model makes

relatively strong assumptions. Nonetheless, if the assumptions hold

sufficiently, this measurement model can produce scales (i.e.,

health-state values) offering a number of advantages over those

derived by standard measurement techniques or even contempo-

rary DC models.

Rasch developed the model for dichotomous data. He applied it

to response data derived from intelligence and attainment tests,

including data collected by the Danish military [53]. It does not

confront the respondents with a paired comparison task or a

ranking task. Instead, the responses are collected separately

(monadic measurement) for a set of items. Versions of the Rasch

model are particularly common in psychometrics, the field

concerned with the theory and technique of psychological and

educational measurement, where they are known as response

models. The most important claim of the Rasch model is that due

to the mode of collecting response data, in combination with the

conditional estimation procedure, the derived measures comply

with the three important principles: interval level, unidimension-

ality, and invariance. Because it uses a specific mechanism (see

explanation below), the application of the Rasch model is

sometimes referred to as fundamental or objective measurement.

Measurement Model
The Rasch model is a mathematical function that relates the

probability of a (correct) response on an item to characteristics of

the person (e.g., ability) and to characteristics of the item (e.g.,

difficulty). For quantifying health states, this model would relate

the probability of a response on a health state to characteristics of

an individual (e.g., own health status) and to characteristics of

given health states (e.g., severity).

Health Measurement Model
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The data structure required by the Rasch model is identical to

that of another response model, namely Guttmann scaling, which

had been developed independently at an earlier stage [54].

Whereas the Guttmann model is deterministic, the Rasch model is

probabilistic. The key to Rasch scaling is in the analysis. Figure 1

(top) shows the responses of 7 patients on 8 health states (A–H).

Subsequently, this matrix is sorted so that patients who agree that

all health states are preferred over their own health state are listed

at the top, and patients agreeing with fewer are at the bottom. For

patients with equal number of agreements, the health states are

sorted from left to right from states that most agreed to, to states

that fewest agreed to. To obtain the specific structure of the data

for Rasch analysis the respondents (their own health status) must

be distributed over the whole unidimensional scale. Thus, a

sample clustered at only one location on the scale (e.g., all healthy

people) is not conducive to good estimations of the model.

Moreover, the Rasch model can be seen as a practical realization

of conjoint measurement (axiomatic theory for quantification of

multiple rank-based attributes) with an underlying stochastic

structure [55]. For this and other reasons, many scientists consider

the Rasch model as the preeminent means to measure subjective

phenomena ‘objectively’.

Extensions of the Rasch model have been developed indepen-

dently and simultaneously; these are known as item response

theory (IRT) models [56]. The extensions differ from the original

model in the sense that they have a parameter to express the

discrimination of an item (the degree to which the item

discriminates between persons in different regions on the latent

continuum). These IRT models relax to some extent the strict

requirements for responses (e.g., data) posed by the Rasch model.

But IRT models do not possess the specific fundamental

measurement property of the Rasch model and therefore do not

necessarily produce cardinal measures [25,53].

Mathematics
In the Rasch model for dichotomous data, the probability that

the outcome is correct (or that one health state is better than

another) is given by:

Prs~
e(hr{vs)

1ze(hr{vs)
ð10Þ

where hr identifies the health status h of the person, and vs refers to

the state s (In many textbooks, the notation of the Rasch model

and other item response theory models is slightly different). By an

interactive conditional maximum likelihood estimation approach,

an estimate vs – vt is obtained without involvement of h, which is a

special feature of the Rasch model. Formula 10 can be rewritten

as:

Prs~
1

1ze{(hr{vs)
ð11Þ

The invariance of measurement principle has two implications for

the Rasch model. First, estimates of individual characteristics

(person parameter h; i.e., health status) as measured by the

instrument are comparable regardless of which health states are

included in the instrument. Second, estimates of the position (i.e.,

severity) of the health states (item parameter v) on the scale of the

instrument are comparable regardless of the selection of the

sample of respondents. This is true as long as the sample reflects

the broad spectrum of the scale.

The Multi-Attribute Preference Response Model

By incorporating the key response mechanism of the Rasch

model into the DC framework, a new and advanced health-status

measurement model can be obtained. The strength of the DC

models (their capacity not only to quantify health states but also to

estimate a value function) can be combined with the strength of

the Rasch model (individual patients are given responses to

realistic and understandable health descriptions). In principle, such

a new model should also encompass the desirable measurement

features of the fundamental Rasch model (Figure 2). Moreover, the

specific response mode of the Rasch model (patient’s own health

state versus other related health states) will largely prevent any

adaptation effects. This combination of features from the DC and

the Rasch models is referred to as the multi-attribute preference

response (MAPR) model. Although there are (subtle) differences

between methods from related areas, such as multi-criteria

decision analysis (operations research), multi-attribute choice

models (decision science), discrete choice models (economics),

and the MAPR model, many of the objectives and procedures of

these models are the same [57,58]. However, multi-criteria

decision analysis is essentially focused on optimization, the choice

models are focused on explaining choice behavior, whereas the

MAPR model is focused on measurement (i.e., quantification).

In fact, the Rasch model is closely related to most discrete

choice models and their extensions. What makes the Rasch model

unique is the person parameter (h) [59,60]. When dealing only

with choice sets consisting of two health states (s and t), the left part

of Formula 5a can be expressed even more succinctly. Dividing the

Figure 1. Schematic representation of Guttman/Rasch data
structure. Representation of the raw data (top) and after sorting of the
columns (health states) and the rows (patients) in order to arrive at the
hierarchical Guttman/Rasch data structures (the check mark indicates
that this health state is preferred over the next health state, the cross
mark indicates a misfit) (from: [33]).
doi:10.1371/journal.pone.0079494.g001
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numerator and denominator by the numerator, and recognizing

that ea/eb = e (a–b), Formula 5a becomes:

Prs~
1

1ze{(vs{vt)
: ð12Þ

In this equation it is obvious that the basic formulas for the DC

model and the Rasch model differ in only one parameter. The DC

model requires two parameters, vs and vt. In the Rasch model, one

of these parameters is ‘replaced’ by a parameter, h, that represents

the location of the respondent (Formula 11). Formula 12 can

therefore be rewritten as formula 13. The latter is the basic

formula for the MAPR model, created by adding a parameter, c,

for the attributes of the health states:

Prs~
1

1ze(hr{zrs ª)
ð13Þ

In this model a set of linear restrictions is imposed on the health-

state parameters (v) of the Rasch model as, vrs~zrs c. In another

setting and approached differently Fischer developed a model that

has a close connection with the MAPR model [61,62].

Data Collection
As noted, the Rasch model demands a specific data structure

that is essentially different from that of the DC model. The

implication is that data have to be derived by new and innovative

response tasks. Judgments are required from a heterogeneous

sample of people in various health conditions. This means that

respondents should not be a representative sample of the general

population. Instead, they should be patients who are currently

experiencing one of the health states on the continuum from worst

to best health status. The reason for this can be seen in Figure 3

that shows graphically the judgmental task for the conventional

valuation method TTO (A), the DC task (B), and the MAPR

model (C). For the former two a sample of the general population

has to assess a pool of states, which is done for the TTO state by

state and in the discrete choice task for pairs of states. As the

generally population will mainly consist of healthy people they are

positioned on the right side on the HRQoL scale. In the MAPR

model this is different. Based on the initial classification of their

own health status each individual patient is assessing a pool of

health (in this example only 2) states that are located in the region

of their own HRQoL status. So, patients respond to hypothetical

health states by comparing these health states with their own

health condition. For example: ‘‘Is this health state better than

your own health state?’’ (Figure 4). The conditional (multinomial)

logit model will then become similar to the Rasch model. This will

occur when the following criteria are met: each comparison

consists of two health states, one being the patient’s own state; and

the patient’s own health state is considered as a separate parameter

in the conditional estimation procedure.

The central mechanism in the MAPR model is that the response

task is performed in two distinct stages. First, the classification of

the individual’s health status according to the set of health

attributes generates a value for the description of that state (based

on the underlying value function). In the next step – to which not

all respondents has to continue if the value function has reached a

certain stage of predictive precision – individuals are confronted

with a set of health states that cover the range from severe to mild

or a set of other almost ‘equivalent’ states (see below: pivot designs)

that are compared to their own state that is determined at the first

stage (such a comparison may be more easy than under DC). The

information generated in this part is used to arrive at a more

precise value function. Of course, this iterative mechanism only

operates properly after a large number of individuals have gone

through both stages. So, there is clearly an initiation stage in which

patients are performing the judgmental tasks to feed the statistical

part of the MAPR model. At this stage the value of the health

condition of the patients themselves cannot be (precisely)

estimated. It will take probably 1000 or more patients to conduct

the inception of the MAPR model and arrive at a functional

routine. A relatively large number of respondents is required as the

MAPR model has to estimate health-state parameters and patient

parameters, all based on binary data.

As a first exploration of the MAPR model, we may start with the

most basic variant in which an existing health-status classification

system is used (e.g., EQ-5D). First, patients (representing the whole

continuum from bad to mild health conditions) classify their own

health condition on the basis of the EQ-5D classification. Then

they judge a fixed set (say 20) of EQ-5D health states (representing

the whole continuum from bad to mild states).

Pivot Designs
In standard DC studies, all respondents face the same choice

situations (e.g., pair of health states) or a selection of them. While

this is also possible for the MAPR model, it is not an efficient

approach. Rather than presenting patients with a predetermined

set of health states, it would be better to frame the choice task

within an existing decision context, namely a situation pertaining

to an individual person. This strategy makes use of pivot designs.

First, the respondents classify their own health status according to

a standardized system (e.g., EQ-5D, HUI). Then they are shown

alternatives with attribute levels that deviate slightly from their

own levels. Several approaches for finding efficient pivot designs

have been developed. Upon comparison, the most attractive one

proves to be based on the individual’s responses [63]. Because this

approach entails a separate design for each respondent, it should

also yield the highest efficiency. It is well known that a test item

provides the most information about a respondent when its

severity is roughly the same as that of the person’s health status.

Such an approach requires a computer adaptive testing environ-

Figure 2. Data collection designs and response processes in
measurement models. Schematic representation of the different
data collection designs in combination with the specific response
process of these designs and the appropriate measurement models for
these four combinations (combination of discrete choice model and
Rasch model, block bounded by thick line is multi-attribute preference
response model).
doi:10.1371/journal.pone.0079494.g002
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ment (e.g., an internet survey). An efficient design is generated

interactively and is therefore well suited to the proposed MAPR

model for quantifying health states.

Individual Choices of Health Domains
The MAPR model can even be extended to cover a large set of

candidate domains. An individual patient could then select the

ones most relevant to his or her assessment (far more than the

traditional four to nine domains in existing instruments). Recently,

specific solutions (partial profile choice designs) for this situation

have been introduced [64]. In such an extended variant of the

MAPR, the precision of the underlying value function will increase

step by step. The reason is that individuals then use more and

more attributes when comparing their own health status with

other health states. Of course, the overall estimation and

convergence of such a MAPR model requires substantial input

from the patients. At present, many aspects of these partial profile

designs remain to be investigated in more detail, in particular in

the setting of health-state valuation – a challenging task. For

example, one of the elementary assumptions in applying this type

of model is that all the attributes (health domains) that are not part

of individual judgmental tasks are to be set to ‘09 (no value).

Studies in other areas have shown that this assumption does not

always hold [65].

Discussion

This article presents a new measurement approach, the multi-

attribute preference response model (MAPR), to quantify subjec-

tive elements of health. The MAPR model can be considered as an

Figure 3. Judgmental tasks used in measurement methods. Schematic representation of the judgmental task for three health states by:
A = conventional monadic measurement (SG, TTO) by a sample of the general population; B = conventional discrete choice task (paired comparison)
by a sample of the general population; C = multi-attribute preference response model for individual patients (3 patients in this example, each
assessing 2 nearby located health states).
doi:10.1371/journal.pone.0079494.g003
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adaptation of the standard discrete choice model or as an

extension of the standard Rasch model. This paper also shows

that seemingly different models are often very similar. Conven-

tional valuation techniques are known to have many problems,

such as adaptation, discounting, context, reference point, and

other effects [66]. With the MAPR model, unwanted mechanisms

affecting valuations of health states may be largely eliminated.

From a theoretical and practical point of view, both the MAPR

and the DC models are more attractive than TTO and other

conventional valuation techniques. In the MAPR and DC models,

the judgmental task and the analysis are executed within one

unifying framework. This is different for the TTO, where the

valuation technique and the statistical model to estimate a value

function are distinct (e.g., using different regression techniques,

different coding of the parameters). The strength of the DC and

MAPR models is that the derived values relate to one particular

aspect: the attractiveness of a health state. Such measures are not

confounded by aspects such as time preference (duration of time

frame) or the choice for an indifference procedure, nor are there

difficulties in quantifying states worse than dead. It is sometimes

said that, unlike the TTO technique, most of the present choice

models to quantify health states do not specify the duration of the

states. However, as the two states in each pair are rather similar in

these type of studies, including a duration statement would hardly

affect the responses. Furthermore, discrimination is a basic

operation of judgment and a means of generating knowledge.

The core activity of measurement in probabilistic choice models is

to compare two or more entities in such a way that the data yields

compelling information on individuals’ preferences, thereby

imitating choices in daily life.

The Rasch model occupies a special position in the field of

subjective measurement, although mathematically it is closely

related to item response theory. Broadly speaking there are two

general schools of thought, each known for its particular approach.

When the response data satisfy the conditions required by these

mathematical models, the estimates derived from the models are

considered robust. When the data do not fit the chosen model, two

lines of inquiry are possible. In essence, when the data do not fit a

given model, the IRT approach is to find a mathematical model

that best fits the observed item-response data. By contrast, the

Rasch measurement approach is to find data that better fit the

Rasch model. Thus, it follows that proponents of IRT use a family

of item-response models, while proponents of Rasch measurement

use only one model (Rasch model).

A major limitation of the MAPR model, as with any

probabilistic choice model, is that it produces relative positions

of all health states on the latent scale [30,67]. For the estimation of

DALYs and QALYs, however, those values need to be on the

‘dead’– ‘full-health’ scale. If the MAPR model is used to value

health, a way must be found to link the position of ‘dead’ with the

derived values. A similar solution may also be relevant to locate

the position of the best (dominant) health state of a multi-attribute

classification system to ‘full health’. A strategy for rescaling DC

values may be to anchor them on values obtained for the best

health state and for ‘dead’ using other valuation techniques, such

as TTO or SG. However, the rationale for this approach is

unclear. Part of the motivation for adopting probabilistic choice

models as potential candidates to produce health-state values lies

in the limitations of existing valuation techniques. Alternatively,

the judgmental format may be set up in such a way that the

derived health-state values can be related to the value of the state

‘dead’. A simple manner to achieve this seems to involve making

designs in which respondents are presented with at least one bad

health state at a time and asked if they consider it better or worse

than being dead. The procedure has been demonstrated by

McCabe et al. [37] and Salomon [31]. These authors mixed the

state ‘dead’ in with the choice set as a health state, so that a

parameter for the state ‘dead’ is estimated as part of the model. To

investigate whether or not this strategy would produce health-state

values with acceptably low bias, it will be necessary to draw

comparisons with values obtained using alternative measurement

methods. A problem associated with including ‘dead’ as part of the

choice set is that proper estimation of values seems only possible if

almost all respondents consider some health states to be worse

than dead. Otherwise, the estimated parameters of the model are

likely to be biased [68]. Another approach could employ models

that are suitable for dealing with dominant health states (the best

health states in a multi-attribute system) to calibrate the metric

distances in this region [69]. One example would be to apply

multidimensional scaling [70]. In sum, it is hard to say beforehand

which approach to deriving DALY/QALY values that are

anchored to ‘dead’ would produce valuable and effective results

for the MAPR model (DC models have the same problems).

Theoretically competent construction of MAPR models and

subsequent experimentation with these models would therefore

be required to see how these difficulties could be resolved in a

particular situation.

Several elements related to the MAPR model must be

investigated empirically to confirm certain assumptions and

explore potential limitations. In particular, the Guttman/Rasch

structure of the data has to be proven. As the data collection

for the MAPR model is done in patient groups, suboptimal

response data may be resulting from interpretation problems of

the health domains and their levels, from using cognitive

shortcuts, from irrational choice behavior, and other factors.

One of the crucial elements that has to be decided on before

any measurement of health status can take place is the selection

of the health domains to conceptualize health-state descriptions.

An overwhelming number of health-status or HRQoL instru-

ments are available. Each has been developed with a particular

concept in mind, resulting in instruments with a specific depth

(basic or subordinate units of information; for example, physical

function, self-care, bathing) and breadth (e.g., physical function,

emotional function, pain, cognitive ability). However, all current

descriptive and preference-based health-status instruments are

based on a predetermined restricted set of health domains. This

Figure 4. Response task MAPR model. Example of a response task
under the multi-attribute preference response (MAPR) model (based on
EQ-5D description).
doi:10.1371/journal.pone.0079494.g004
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common denominator has certain drawbacks. For example, for

some patients or diseases, the predetermined set may miss some

crucial health domains. Extending it to create a very broad set

is not feasible for several reasons, both practical and analytical.

In light of information theory, it is clear that a limited set of

domains may deliver enough detailed information to adequately

describe the health status of a person if these domains are well

selected and reflect the domains most relevant to this specific

person.

Therefore, an advantageous property of the MAPR model is

that it can overcome the limitation of the restricted set of health

domains, which is a drawback of the existing preference-based

health-status systems (e.g., HUI, EQ-5D). In many instances,

these instruments prove to be insensitive or invalid, due to their

restricted and fixed set of health attributes. The MAPR model,

in contrast, can be extended to include a large set (40–120) of

candidate domains from which an individual patient can select

a few (5–7), namely the most relevant ones. A large number of

individual responses would be needed to collect enough data. As

there is no shortage of patients, the estimation part of this

model from a practical point of view is not too challenging [64].

Of course, the statistical routines for such an approach have to

be developed, and ultimately, empirical research must prove the

premise of such an extended MAPR model. An instrument that

shows some resemblance to the measurement strategy of the

MAPR model, in which the content is derived from individual

patients, is the SEIQoL [71]. Although it is not embedded in a

formal measurement model, this instrument permits individuals

to select and value the health domains that are important to

them in their HRQoL assessment. The EuroQol Group is

planning to develop special ‘bolt-ons’ (comprising additional

health attributes) that will be added to the existing five health

attributes of the EuroQol-5D system [72]. Yet, the analytical

integration of these bolt-ons does not seem to be part of an

overarching framework. The Group has indicated that in the

end the maximum number of predetermined attributes will be

seven instead of five.

Existing multi-attribute preference-based health-status systems

are conceptualized as having two stages: one encompasses the

valuation study to derive the value function; the second

comprises an application stage, in which the health status of

individuals is determined. One of the major strengths of the

MAPR model is that it is a continuous process of valuation and

application.

Patients may be regarded as the best judges of their own

health status. Therefore, it is sensible to defend the position that

it is the patient’s judgment that should be elicited. However, it

may be the case that values for health states worked out under

the MAPR model both for patients and a sample of unaffected

members of the general population are rather similar [19].

Otherwise, empirical MAPR head-to-head studies may reveal

that responses from the general population are evenly valid,

except maybe for the very worst health states. These type of

health states may be under or overestimated by healthy people

due to lack of familiarity with the impact of seriously reduced

health.

The MAPR model may also be an avenue for developing a

health-status measurement instrument that can be used in

broader settings (e.g., medical interventions and medical care)

and in distinctive patient populations (e.g., children, adults,

elderly). Another possible extension of the MAPR model would

be to combine it with Monte Carlo simulation and then to use

this technology in estimating response models within a full

Bayesian framework [73,74]. In principle, the MAPR model

may be suitable to measure other unidimensional, subjective

phenomena such as well-being, capabilities, and happiness;

under certain conditions it might be used in social value

judgments (e.g., reimbursement decisions). For the overall

quantification of quality in general the MAPR model may also

be beneficial [75]. Our group is currently working on different

variants of the MAPR model and the related estimation

functions. In addition, the first empirical patient studies are

planned.

Conclusions

Incorporating the basic elements of the Rasch model into the

DC framework (or vice versa) produces an advanced model with

fundamental measurement characteristics: the multi-attribute

preference response (MAPR) model. This new patient-reported

outcome measurement model is more coherent than the

conventional valuation methods and has a profound connection

to measurement theories. The MAPR model can be applied to

a wide range of research problems. Specifically, if extended with

self-selection of relevant health attributes for the individual

patient, this model will be more valid than existing valuation

techniques.
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